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1. Introduction 

State-of-the-art methods for estimating the aerodynamics of projectiles include 
wind-tunnel tests, spark-range firings, and free flight with onboard sensors. For the 
sake of accurate aerodynamic models, free-flight tests are preferred over wind 
tunnel. Spark range tests are limited to short range and flat fire. Thus, for projectiles 
with long-range and indirect fire, free flight with onboard sensors remains the best 
option. 

Measurements for such tests are generally limited to onboard magnetometer, 
gyroscope, and accelerometer readings plus externally observed radar azimuth, 
elevation, and range rate. Unlike spark-range shadowgraphs, none of these 
measurements directly correlate to the projectile’s absolute position and orientation 
in space. Moreover, gyroscope and accelerometer readings are strongly correlated 
to projectile angular rates and linear accelerations as opposed to position and 
orientation.  

In light of these observations, the free-flight trajectory may be modelled by forward 
integration of a dynamic model, and output error methods may be used to estimate 
aerodynamic coefficients in order to match the data in a least-squares sense. 
However, determining the initial projectile state for best trajectory match appears 
to be an open problem.1–6  

For several decades, reduction of spark-range data was handled by matching a 
linearized trajectory model to the data.7 Models of progressively higher fidelity 
were used in a deliberate sequence. Then, Chapman and Kirk8,9 introduced a 
method to fit nonlinear 6 degree-of-freedom (DOF) models directly to spark-range 
data. Their method is widely used to date with a few modest enhancements. 
Hathaway and Whyte10 extended the Chapman–Kirk method to include onboard 
sensor measurements. Their work resulted in the Extending Telemetry Reduction 
to Aerodynamic Coefficients and Trajectory Reconstruction (EXTRACTR) 
software licensed by Arrow Tech Associates. Davis et al.11 demonstrated the use of 
EXTRACTR in a comprehensive set of tests on 155-mm M483A1 projectiles with 
instrumented fuses developed at the US Army Research Laboratory. More recently, 
Fresconi and Harkins applied the onboard-sensor technique to projectiles equipped 
with control mechanisms.12,13 The second of their papers introduced asymmetric 
aerodynamics including a side moment into the model and used an onboard solar 
yawsonde to resolve the correct sense of projectile coning motion. Davis et al.14 
instrumented an 81-mm M879 mortar. Some data gathered from their experiment 
were used to test the algorithms in Burchett.5 More sophisticated measurements can 
now be incorporated, and modern personal computers allow even large data sets to 
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be processed in a few minutes at one’s desk. We demonstrate three versions of the 
Chapman–Kirk method in Sections 5, 7, and 8 of this report, and a related recursive 
method in Section 6. The Chapman–Kirk method still requires good initial guesses 
as it suffers from a small region of convergence. Sections 5 and 7 attempt to address 
this issue by fitting simpler models and restricting the measurements to a relevant 
subset to obtain good guesses for a subset of the states.  

This work is primarily targeted at developing an algorithm to extract aerodynamic 
parameters for the High Maneuverability Airframe (HMA) depicted in Fig. 1. HMA 
is a 7-DOF vehicle with a highly instrumented forward section with four 
independently controlled canards. The tail section has eight canted fins to induce 
spin stability but is isolated from the nose by a smooth bearing. The roll and roll 
rate of the tail are not measured. The extra DOF and lack of measurement present 
unique challenges, which are discussed in Section 6.   

 

Fig. 1 The HMA 83-mm dual spin vehicle 

In this work, we will review several methods for estimating the initial-state vector. 
Various levels of model fidelity are used to find subsets of initial states. Three 
methods matching full models will be explored. First, the initial Euler angles can 
be found from the initial magnetometer readings through numerical root finding. 
Second, the initial-position vector can be found by propagating a point-mass model 
and sensitivities forward in time. These sensitivities can then be used with the radar 
measurements in a Marquardt algorithm to render an accurate estimate of the initial 
position vector. Third, the application of an unscented Kalman filter (UKF) to  
7-DOF high-fidelity dynamics allows for accurate estimates of projectile initial 
velocities and angular rates. Fourth, a 7-DOF linear model is leveraged to estimate 
the full initial state by propagating sensitivities forward in time in parallel with 
trajectory predictions. Finally, sensitivities of states to initial states are found for a 
6-DOF nonlinear model. These are incorporated with a high-fidelity simulation to 
iterate both initial states and aerodynamic parameters simultaneously.  
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2. Three- and 6-DOF Models of Projectile Flight 

Two models most frequently used to model projectile flight are presented here. The 
3-DOF or point-mass model may be used to predict a projectile’s trajectory with 
respect to the ground when only the position of the projectile’s center of gravity 
(CG) is of interest. Such a model may be used for initial estimates of the total drag 
coefficient, and initial position of the projectile CG. The following six equations, 
1a–1f, describe the position and velocity of the projectile CG with respect to a flat, 
nonrotating earth in a ground-fixed frame: 

 
�̇�𝑥  = 𝑉𝑉𝑥𝑥  , (1a) 

 
�̇�𝑦  = 𝑉𝑉𝑦𝑦  , (1b) 

 �̇�𝑧  = 𝑉𝑉𝑧𝑧   , (1c) 
 

�̇�𝑉𝑥𝑥  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ∙ 𝑉𝑉𝑥𝑥  , 
(1d) 

 

�̇�𝑉𝑦𝑦  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ∙ 𝑉𝑉𝑦𝑦  , 
(1e) 

and 

�̇�𝑉𝑧𝑧  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ∙ 𝑉𝑉𝑧𝑧 + 𝑔𝑔 
(1f) 

where the +g  term indicates that altitude is positive down, �̂�𝐶𝑥𝑥 is a dimensional drag 
coefficient [1/length] and lift is considered negligible.  

The standard nonlinear 6-DOF equations of motion4 shown in Eqs. 2a–2d, are used 
when projectile position and orientation predictions are required. This level of 
fidelity is needed when reducing onboard sensors since the measurements are 
functions of projectile orientation, angular rates, and linear accelerations:  

 

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = 𝑇𝑇𝑏𝑏2𝑖𝑖𝑇𝑇 �

𝑢𝑢
𝑣𝑣
𝑤𝑤
� = 𝑓𝑓(𝜙𝜙,𝜃𝜃,𝜓𝜓,𝑢𝑢, 𝑣𝑣,𝑤𝑤)  , 

 

(2a) 

 
�
�̇�𝜙 
�̇�𝜃
�̇�𝜓
� = 𝑇𝑇𝑏𝑏2𝑒𝑒 �

𝑝𝑝
𝑞𝑞
𝑟𝑟
� = 𝑔𝑔(𝜙𝜙,𝜃𝜃, 𝑝𝑝, 𝑞𝑞, 𝑟𝑟)  , 

 
(2b) 
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�
�̇�𝑢 
�̇�𝑣
�̇�𝑤
� = �

𝑋𝑋/𝑚𝑚
𝑌𝑌/𝑚𝑚
𝑍𝑍/𝑚𝑚

� − 𝐒𝐒 �
𝑢𝑢
𝑣𝑣
𝑤𝑤
� = ℎ(𝜙𝜙,𝜃𝜃,𝜓𝜓,𝑢𝑢, 𝑣𝑣,𝑤𝑤,𝑝𝑝, 𝑞𝑞, 𝑟𝑟)  , 

 

(2c) 

and 

�
�̇�𝑝 
�̇�𝑞
�̇�𝑟
� = [𝐈𝐈]−1 ��

𝐿𝐿
𝑀𝑀
𝑁𝑁
� − 𝐒𝐒[𝐈𝐈] �

𝑝𝑝
𝑞𝑞
𝑟𝑟
�� = 𝑘𝑘(𝑝𝑝, 𝑞𝑞, 𝑟𝑟) 

 

(2d) 

where  

  

𝑇𝑇𝑏𝑏2𝑖𝑖 = �
𝑐𝑐𝜃𝜃𝑐𝑐𝜓𝜓 𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 −𝑠𝑠𝜃𝜃

𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝜙𝜙𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑐𝑐𝜓𝜓 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃
𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 − 𝑠𝑠𝜙𝜙𝑐𝑐𝜓𝜓 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� 

  

 
 

𝑇𝑇𝑏𝑏2𝑒𝑒 = �
1 𝑠𝑠𝜙𝜙𝑡𝑡𝜃𝜃 −𝑐𝑐𝜙𝜙𝑡𝑡𝜃𝜃
0 𝑐𝑐𝜙𝜙 −𝑠𝑠𝜙𝜙
0 𝑠𝑠𝜙𝜙/𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙/𝑐𝑐𝜃𝜃

� 

 

𝐒𝐒 = �
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

�  . 

  

 

Some terms of interest from the force {𝑋𝑋 𝑌𝑌 𝑍𝑍} and moment {𝐿𝐿 𝑀𝑀 𝑁𝑁} vectors 
are unpacked in a subsequent section. (For a more complete treatment, please see 
Burchett,1 McCoy,4 or Fresconi et al.6) 

3. Measurement Models for Onboard Sensors 

Four types of measurements are gathered during free-flight testing with onboard 
sensors. These are 1) external radar radial velocity, elevation and azimuth, 2) 
strapdown gyroscope, 3) onboard magnetometer, and 4) strapdown accelerometer 
readings. First, we define the external radar measurement vector {𝑅𝑅𝑉𝑉 𝑅𝑅𝜃𝜃 𝑅𝑅𝜓𝜓}: 

 

𝑅𝑅𝑉𝑉 =
�̇�𝑥𝛿𝛿𝑥𝑥 + �̇�𝑦𝛿𝛿𝑦𝑦 + �̇�𝑧𝛿𝛿𝑧𝑧 

�𝛿𝛿𝑥𝑥2 + 𝛿𝛿𝑦𝑦2 + 𝛿𝛿𝑧𝑧2   ,
 

(3a) 

 
𝑅𝑅𝜃𝜃 = tan−1(𝛿𝛿𝑧𝑧/𝛿𝛿𝑥𝑥)  , (3b) 

and 
𝑅𝑅𝜓𝜓 = tan−1(𝛿𝛿𝑦𝑦/𝛿𝛿𝑥𝑥) (3c) 

where  
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𝛿𝛿𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝐴𝐴  , (3d) 

 
𝛿𝛿𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦𝐴𝐴  ,    (3e) 

and 
𝛿𝛿𝑧𝑧 = 𝑧𝑧 − 𝑧𝑧𝐴𝐴   . (3f) 

And, {𝑥𝑥𝐴𝐴 𝑦𝑦𝐴𝐴 𝑧𝑧𝐴𝐴} is the radar antenna position in the gun-tube frame.  

A strapdown gyroscope measures the projectile angular rates {𝑝𝑝 𝑞𝑞 𝑟𝑟}, in the 
body frame. The onboard magnetometer measures the earth’s magnetic field in the 
body frame:  

 

�
𝑚𝑚�𝐸𝐸𝑥𝑥 
𝑚𝑚�𝐸𝐸𝑦𝑦
𝑚𝑚�𝐸𝐸𝑧𝑧

� = 𝑇𝑇𝑏𝑏2𝑖𝑖 �
𝑐𝑐𝛼𝛼 𝑠𝑠𝛼𝛼 0
−𝑠𝑠𝛼𝛼 𝑐𝑐𝛼𝛼 0

0 0 1
� �
𝑚𝑚𝐸𝐸𝑥𝑥 
𝑚𝑚𝐸𝐸𝑦𝑦
𝑚𝑚𝐸𝐸𝑧𝑧

� 

 

(4) 

where α is the launch azimuth clockwise from true north.   

The mapping from projectile states to accelerometer measurements is given by 
Eq. 5: 

 

�
𝑎𝑎�𝑥𝑥
𝑎𝑎�𝑦𝑦
𝑎𝑎�𝑧𝑧
� = ��

�̇�𝑢
�̇�𝑣
�̇�𝑤
� + 𝐒𝐒 �

𝑢𝑢
𝑣𝑣
𝑤𝑤
� − 𝑇𝑇𝑏𝑏2𝑖𝑖 �

0
0
𝑔𝑔
� + 𝐒𝐒 ∙ 𝐒𝐒 ∙ 𝐑𝐑𝐀𝐀 + �̇�𝐒 ∙ 𝐑𝐑𝐀𝐀�   . 

 

        
(5) 

𝐒𝐒 and �̇�𝐒 are skew matrices contrived to perform cross products 

 
𝐒𝐒 = �

0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

� �̇�𝐒 = �
0 −�̇�𝑟 �̇�𝑞
�̇�𝑟 0 −�̇�𝑝
−�̇�𝑞 �̇�𝑝 0

� 
 

 

and 𝐑𝐑𝐀𝐀 is the vector from projectile CG to accelerometer position in the body frame. 
The full measurement vector can then be assembled as  

𝐘𝐘 = [̃𝑚𝑚�𝐸𝐸𝑥𝑥 𝑚𝑚�𝐸𝐸𝑦𝑦 𝑚𝑚�𝐸𝐸𝑧𝑧   𝑝𝑝 𝑞𝑞 𝑟𝑟 𝑎𝑎�𝑥𝑥 𝑎𝑎�𝑦𝑦 𝑎𝑎�𝑧𝑧 𝑅𝑅𝑉𝑉 𝑅𝑅𝜃𝜃 𝑅𝑅𝜓𝜓]. 

4. Derivatives of Onboard Sensor Measurements with Respect 
to the State 

In the subsequent sections, several gradient-based searches are proposed to match 
a model trajectory to the onboard sensor measurements. A fundamental concept 
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behind each of these methods is that the sensitivities of measurements with respect 
to the adjustable parameters 𝜕𝜕𝐘𝐘/𝜕𝜕𝛝𝛝 may be found by applying the chain rule  

𝜕𝜕𝐘𝐘
𝜕𝜕𝛝𝛝

=
𝜕𝜕𝐘𝐘
𝜕𝜕𝐗𝐗

𝜕𝜕𝐗𝐗
𝜕𝜕𝛝𝛝

 

where the parameter vector 𝛝𝛝 may contain both aerodynamic coefficients, and 
initial conditions. Due to the nonlinear mapping from model states to measurement 
predictions, nontrivial sensitivities of measurements with respect to (wrt) projectile 
states, 𝜕𝜕𝐘𝐘/𝜕𝜕𝐗𝐗, must be found.   

The 12 × 12 derivative matrix will be filled in blocks as   

 

𝜕𝜕𝐘𝐘
𝜕𝜕𝐗𝐗

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0

𝜕𝜕𝐦𝐦
𝜕𝜕𝚯𝚯

0
𝜕𝜕𝛚𝛚
𝜕𝜕𝚯𝚯

0
𝜕𝜕𝐚𝐚
𝜕𝜕𝚯𝚯

𝜕𝜕𝐑𝐑
𝜕𝜕𝚾𝚾

𝜕𝜕𝐑𝐑
𝜕𝜕𝚯𝚯

0 0

0
𝜕𝜕𝛚𝛚
𝜕𝜕𝛚𝛚𝑛𝑛𝑛𝑛

𝜕𝜕𝐚𝐚
𝜕𝜕̇𝐔𝐔

𝜕𝜕𝐚𝐚
𝜕𝜕𝛚𝛚

𝜕𝜕𝐑𝐑
𝜕𝜕̇𝐔𝐔

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

  
(6) 

where the vectors 𝐦𝐦 = { ̃𝑚𝑚�𝐸𝐸𝑥𝑥 𝑚𝑚�𝐸𝐸𝑦𝑦 𝑚𝑚�𝐸𝐸𝑧𝑧}, 𝐚𝐚 = { ̃𝑎𝑎�𝑥𝑥 𝑎𝑎�𝑦𝑦 𝑎𝑎�𝑧𝑧}, 𝐑𝐑 =
{𝑅𝑅𝑉𝑉 𝑅𝑅𝜃𝜃 𝑅𝑅𝜓𝜓}, 𝛚𝛚 = {𝑝𝑝 𝑞𝑞 𝑟𝑟}, 𝚯𝚯 = {𝜙𝜙 𝜃𝜃 𝜓𝜓}, 𝐗𝐗 = {𝑥𝑥 𝑦𝑦 𝑧𝑧}, 𝐔𝐔 =
{𝑢𝑢 𝑣𝑣 𝑤𝑤} are used for shorthand.  

Then 

 
𝜕𝜕𝐦𝐦
𝜕𝜕𝚯𝚯

= �
𝜕𝜕𝐦𝐦
𝜕𝜕𝜙𝜙

𝜕𝜕𝐦𝐦
𝜕𝜕𝜃𝜃

𝜕𝜕𝐦𝐦
𝜕𝜕𝜓𝜓

� 
(7) 

and  

 
𝜕𝜕𝐦𝐦
𝜕𝜕𝜙𝜙

=
𝜕𝜕𝑇𝑇𝑏𝑏2𝑖𝑖
𝜕𝜕𝜙𝜙

�
𝑐𝑐𝛼𝛼 𝑠𝑠𝛼𝛼 0
−𝑠𝑠𝛼𝛼 𝑐𝑐𝛼𝛼 0

0 0 1
� �
𝑚𝑚𝐸𝐸𝑥𝑥 
𝑚𝑚𝐸𝐸𝑦𝑦
𝑚𝑚𝐸𝐸𝑧𝑧

�   , 

  

 

(8) 

and so on.  

Since a linear model may be defined in a no-roll frame, gyroscope measurements 
are sensitive to the Euler angles due to the conversion from no-roll to body frame. 
Thus  
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𝜕𝜕𝛚𝛚
𝜕𝜕𝛚𝛚𝑛𝑛𝑛𝑛

= �
1 0 0
0 𝑐𝑐𝜙𝜙 𝑠𝑠𝜙𝜙
0 −𝑠𝑠𝜙𝜙 𝑐𝑐𝜙𝜙

� 

 

(9) 

and 

 
𝜕𝜕𝛚𝛚
𝜕𝜕𝝓𝝓

= �
0 0 0
0 −𝑠𝑠𝜙𝜙 𝑐𝑐𝜙𝜙
0 −𝑐𝑐𝜙𝜙 −𝑠𝑠𝜙𝜙

� �
𝑝𝑝 
𝑞𝑞
𝑟𝑟
�
𝑛𝑛𝑛𝑛

 ; 

 

(10) 

however, the right-hand side (RHS) of Eqs. 9 and 10 become identity and zero 
respectively when using a nonlinear model with angular rates predicted in the body 
frame. Also 

 

𝜕𝜕𝐑𝐑
𝜕𝜕𝐗𝐗

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑅𝑅𝑉𝑉
𝜕𝜕𝑥𝑥

𝜕𝜕𝑅𝑅𝑉𝑉
𝜕𝜕𝑦𝑦

𝜕𝜕𝑅𝑅𝑉𝑉
𝜕𝜕𝑧𝑧

𝜕𝜕𝑅𝑅𝜃𝜃
𝜕𝜕𝑥𝑥

0
𝜕𝜕𝑅𝑅𝜃𝜃
𝜕𝜕𝑧𝑧

𝜕𝜕𝑅𝑅𝜓𝜓
𝜕𝜕𝑥𝑥

𝜕𝜕𝑅𝑅𝜓𝜓
𝜕𝜕𝑦𝑦

0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
 

(11) 

and  

 
𝜕𝜕𝑅𝑅𝜃𝜃
𝜕𝜕𝑥𝑥

=
−𝛿𝛿𝑧𝑧

�𝛿𝛿𝑥𝑥2 �𝛿𝛿𝑧𝑧
2

𝛿𝛿𝑥𝑥2 + 1��
 

 
𝜕𝜕𝑅𝑅𝜃𝜃
𝜕𝜕𝑧𝑧

=
1

�𝛿𝛿𝑥𝑥 �𝛿𝛿𝑧𝑧
2

𝛿𝛿𝑥𝑥2 + 1��
 

 

 
𝜕𝜕𝑅𝑅𝜓𝜓
𝜕𝜕𝑥𝑥

=
−𝛿𝛿𝑦𝑦

�𝛿𝛿𝑥𝑥2 �𝛿𝛿𝑦𝑦
2

𝛿𝛿𝑥𝑥2 + 1��
 

 
𝜕𝜕𝑅𝑅𝜓𝜓
𝜕𝜕𝑦𝑦

=
1

�𝛿𝛿𝑥𝑥 �𝛿𝛿𝑦𝑦
2

𝛿𝛿𝑥𝑥2 + 1��       .
 

 

The radar radial velocity is sensitive to the Euler angles as  

 
𝜕𝜕𝑅𝑅𝑉𝑉
𝜕𝜕𝜃𝜃

= �
𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑥

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑦

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑧

� ∙
𝜕𝜕𝑇𝑇𝑏𝑏2𝑖𝑖𝑇𝑇

𝜕𝜕𝜃𝜃
�
𝑢𝑢 
𝑣𝑣
𝑤𝑤
� 

 

(12) 

and 
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𝜕𝜕𝑅𝑅𝑉𝑉
𝜕𝜕𝜓𝜓

= �
𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑥

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑦

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑧

� ∙
𝜕𝜕𝑇𝑇𝑏𝑏2𝑖𝑖𝑇𝑇

𝜕𝜕𝜓𝜓
�
𝑢𝑢 
𝑣𝑣
𝑤𝑤
�  . 

 

(13) 

The radar radial velocity is sensitive to the body-frame velocities as 

 
𝜕𝜕𝑅𝑅𝑉𝑉
𝜕𝜕𝐔𝐔

= �
𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑥

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑦

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑧

� ∙ 𝑇𝑇𝑏𝑏2𝑖𝑖𝑇𝑇 �
1 0 0
0 𝑐𝑐𝜙𝜙 𝑠𝑠𝜙𝜙
0 −𝑠𝑠𝜙𝜙 𝑐𝑐𝜙𝜙

� 

 

(14) 

with the last factor applied only when the states are predicted in a no-roll frame. 
The vector of sensitivities wrt the ground-frame velocities is found by 

 

�
𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑥

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑦

𝜕𝜕𝑉𝑉𝑅𝑅
𝜕𝜕�̇�𝑧

� =
[𝛿𝛿𝑥𝑥 𝛿𝛿𝑦𝑦 𝛿𝛿𝑧𝑧]

�𝛿𝛿𝑥𝑥2 + 𝛿𝛿𝑦𝑦2 + 𝛿𝛿𝑧𝑧2
  . 

 

(15) 

Finally, 

 
𝜕𝜕𝐚𝐚
𝜕𝜕𝚯𝚯

= �
𝜕𝜕𝐚𝐚
𝜕𝜕𝜙𝜙

𝜕𝜕𝐚𝐚
𝜕𝜕𝜃𝜃

𝜕𝜕𝐚𝐚
𝜕𝜕𝜓𝜓

� 
(16) 

where  

 
𝜕𝜕𝐚𝐚
𝜕𝜕𝜙𝜙

=
𝜕𝜕
𝜕𝜕𝜙𝜙

�
𝑐𝑐𝜃𝜃𝑐𝑐𝜓𝜓 𝑐𝑐𝜃𝜃𝑠𝑠𝜓𝜓 −𝑠𝑠𝜃𝜃

𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 − 𝑐𝑐𝜙𝜙𝑠𝑠𝜓𝜓 𝑠𝑠𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜙𝜙𝑐𝑐𝜓𝜓 𝑠𝑠𝜙𝜙𝑐𝑐𝜃𝜃
𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑐𝑐𝜓𝜓 + 𝑠𝑠𝜙𝜙𝑠𝑠𝜓𝜓 𝑐𝑐𝜙𝜙𝑠𝑠𝜃𝜃𝑠𝑠𝜓𝜓 − 𝑠𝑠𝜙𝜙𝑐𝑐𝜓𝜓 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� �
0
0
𝑔𝑔
� 

 

(17) 

and so on; 

 
𝜕𝜕𝐚𝐚
𝜕𝜕𝛚𝛚

= �
𝜕𝜕𝐚𝐚
𝜕𝜕𝑝𝑝

𝜕𝜕𝐚𝐚
𝜕𝜕𝑞𝑞

𝜕𝜕𝐚𝐚
𝜕𝜕𝑟𝑟
�  , 

(18) 

where 

 
 

𝜕𝜕𝐚𝐚
𝜕𝜕𝑝𝑝

=
𝜕𝜕𝐒𝐒
𝜕𝜕𝑝𝑝

�
𝑢𝑢
𝑣𝑣
𝑤𝑤
� 

 
(19) 

and so forth, and  

 
𝜕𝜕𝐚𝐚
𝜕𝜕𝐔𝐔

= 𝐒𝐒   . 
(20) 
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5. Methods for Estimating Initial Position and Euler Angles 

Exact initial values of the Euler angles may be found by solving Eq. 4 using the 
initial magnetometer measurements. Since an analytic solution is not possible, a 
Newton method or Marquardt method may be used to reduce the prediction 
residuals below a certain threshold. Applying such a method for 15 Marquardt 
iterations results in the estimates shown in Table 1 under the “Estimate (static)” 
column. These estimates were used to seed the 7-DOF linear model iteration 
described in Section 7, since the initial Euler angles are not adjusted in the 7-DOF 
linear method.  

Examining Eqs. 3a–3f, each sample of three radar measurements is dependent upon 
six quantities (x, y, z, �̇�𝑥, �̇�𝑦, �̇�𝑧). Thus, unlike the magnetometer observation, initial 
values of projectile position and velocity cannot be found from a static solution at 
the initial measurement. In other words, we cannot solve for six unknowns using 
only the three equations (3a–3c). Thus, a model must be fit to the history of radar 
measurements, rather than just the initial point. The simplest model for this motion 
is a point-mass no-lift model in 3-D as shown in Eqs. 1a–1f. 

Integrating Eqs. 1a–1f forward and backward in time with Eqs. 3a–3c as the 
measurement model and using an UKF proved vain as downrange and altitude state 
estimates did not converge to the true values. This seems to indicate the point-mass 
model is unobservable when coupled with the radar measurements only.   

Thus, a gradient-based search using the entire batch of trajectory predictions, and 
an analog Jacobian matrix is sought. Terms in the Jacobian can once again be found 
using 

𝜕𝜕𝐘𝐘
𝜕𝜕𝐗𝐗0

=
𝜕𝜕𝐘𝐘
𝜕𝜕𝐗𝐗

𝜕𝜕𝐗𝐗
𝜕𝜕𝐗𝐗0

 

and the first term on the RHS was defined in Eq. 11. The second term on the RHS 
may be found by numerical integration of a set of costates, which are found by 

𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝐗𝐗
𝜕𝜕𝐗𝐗0

� =
𝜕𝜕̇𝐗𝐗̇̇
𝜕𝜕𝐗𝐗

𝜕𝜕𝐗𝐗
𝜕𝜕𝐗𝐗0

   . 

For the rigid-body modes, any change in the launch position will be directly added 
to the trajectory coordinates for the entire flight: 

 
𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥0

 =
𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦0

=
𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧0

= 1  . 
(21a–c) 
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Sensitivities of position states wrt initial velocities are, in turn 

 
𝜕𝜕

𝜕𝜕𝑉𝑉𝑥𝑥0
(�̇�𝑥)  =

𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑥𝑥0

   , 
(21d) 

 
𝜕𝜕

𝜕𝜕𝑉𝑉𝑦𝑦0
(�̇�𝑦)  =

𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑦𝑦0

   , 
(21e) 

and 
𝜕𝜕

𝜕𝜕𝑉𝑉𝑧𝑧0
(�̇�𝑧)  =

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑧𝑧0

   . 
(21f) 

And, the terms on the RHS of Eq. 21d–21f are found by propagating the following 
set of equations forward in time: 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑥𝑥0

� = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ∙
𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑥𝑥0

 −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12𝑉𝑉𝑥𝑥2 ∙

𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑥𝑥0

  ,
    

(22a) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑦𝑦0

� = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ∙
𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑦𝑦0

 −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12𝑉𝑉𝑦𝑦2 ∙

𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑦𝑦0

 ,
    

and 

(22b) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑧𝑧0

� = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2 ∙
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑧𝑧0

 −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12𝑉𝑉𝑧𝑧2 ∙

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑧𝑧0

  .
    

(22c) 

Additionally, to complete the 𝜕𝜕𝐕𝐕/𝜕𝜕𝐕𝐕0 portion of 𝜕𝜕𝐗𝐗/𝜕𝜕𝐗𝐗0,  six off-diagonal terms 
must be computed for a complete set of derivatives: 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑦𝑦0

�  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12 ∙ 𝑉𝑉𝑦𝑦𝑉𝑉𝑥𝑥 ∙

𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑦𝑦0

  ,  
(22d) 
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𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑧𝑧0

�  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12 ∙ 𝑉𝑉𝑧𝑧𝑉𝑉𝑥𝑥 ∙

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑧𝑧0

  ,  
(22e) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑥𝑥0

�  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12 ∙ 𝑉𝑉𝑦𝑦𝑉𝑉𝑥𝑥 ∙

𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑥𝑥0

  ,  
(22f) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑧𝑧0

�  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12 ∙ 𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 ∙

𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑧𝑧0

  ,  
(22g) 

 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑥𝑥0

�  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12 ∙ 𝑉𝑉𝑥𝑥𝑉𝑉𝑧𝑧 ∙

𝜕𝜕𝑉𝑉𝑥𝑥
𝜕𝜕𝑉𝑉𝑥𝑥0

  , 
(22h) 

and 
𝑑𝑑
𝑑𝑑𝑡𝑡
�
𝜕𝜕𝑉𝑉𝑧𝑧
𝜕𝜕𝑉𝑉𝑦𝑦0

�  = −�̂�𝐶𝑥𝑥�𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2�
−12 ∙ 𝑉𝑉𝑦𝑦𝑉𝑉𝑧𝑧 ∙

𝜕𝜕𝑉𝑉𝑦𝑦
𝜕𝜕𝑉𝑉𝑦𝑦0

  .  
(22i) 

A Marquardt algorithm (Section 7.3) can then be applied to minimize the prediction 
error using Eqs. 1a–1f and 3a–3f to forecast model-based measurements, and 
Eqs.11, 21, and 22 to build the corresponding Jacobian matrix. To emphasize the 
transient parts of radar elevation and azimuth measurements, only the first 0.1 s of 
data is used. After 50 Marquardt iterations, the predicted radar measurements match 
the recorded data to the degree shown in Fig. 2. The resulting initial condition 
estimates are shown in Table 1 in the “Estimate (static)” column. Values are 
reported for x, y, z, and 𝑢𝑢 ≈ ‖�̇�𝑥 �̇�𝑦 �̇�𝑧‖2.  
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a) Radial Velocity 

 
b) Elevation 

 
c) Azimuth 

Fig. 2 Trajectory matching using a point-mass model with analytic derivatives on the radar 
data only 

6. Finding Initial Conditions by Merging the UKF with High-
Fidelity Dynamics 

A comprehensive set of initial conditions may be found by merging the UKF with 
a high-fidelity model of the dynamics. Since the UKF uses any set of nonlinear 
dynamics and nonlinear measurements, existing high-fidelity models may be 
readily shoe-horned into a UKF algorithm. Figure 3 shows a flow chart of the 
algorithm using the HMA subroutines authored by Fresconi.6 For a more complete 
review of the UKF, see Burchett.5 

In order to estimate the initial conditions, the UKF is propagated forward in time 
until the state estimates are well converged. Typically, the algorithm could then be 
integrated backward in time as shown in Burchett.5 However, for the dual-spin 
HMA configuration, the tail-kit roll and roll rate are unmeasured and unobservable. 
This introduces a conundrum where the UKF will converge when integrated 
forward in time, because the tail-kit states are stable in forward time, and thus the 
system is detectable. However, since the tail-kit states are unstable in backward 
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time, they are both unobservable and undetectable, making the system 
undetectable. Thus, two additional approaches were contrived to approximate the 
initial conditions. First, the early history of the plant states could be estimated by 
backward spline extrapolation from the converged portion of the state estimates. 
This method rendered adequate estimates as long as the measurements were noise 
free. However, when more realistic noisy measurements were introduced, the spline 
method failed. The second method was to start the backward integration at a time 
briefly after the state estimates had converged and integrate backward without 
measurement updates. If the states have indeed converged, they should track the 
true states backward for a short period of time without measurement updates.   

 

Fig. 3 Flow chart for applying UKF to high-fidelity simulation “HMA” 

Figures 4–6 show the state estimates for the second method. Truth values are 
plotted as green dashed lines for comparison. The forward integration state 
estimates are plotted as blue lines, and the backward integration predictions are 
shown as red lines. Forward integration proceeded for the full 0.3 s of available 
data. Backward integration was started at 0.1 s where estimation error transients 
have largely died out. The Pitch plot is perhaps the best example of this. Note that 
several state estimates were initialized at zero. Some of the directly measured states 
such as pitch and yaw rate converge so quickly that the transient-state estimate error 
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is indicated by a vertical blue segment at the start of forward integration. Some of 
the indirectly measured states such as altitude, roll, and yaw never fully converge. 
Radar azimuth and elevation measures have small sensitivity to changes in cross 
range and altitude respectively, and forward body-roll rate is plagued by large 
sensor noise and unmeasured actuator inputs. These effects prevent estimates of the 
projectile’s CG position, roll rate, and roll angle from adequate convergence.  
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a) Downrange 

 
b) Cross range 

 
c) Altitude 

 
              d) Forward body-roll angle 

 
e) Pitch 

 
f) Yaw 

  
Fig. 4 Second method’s trajectory matching using the UKF with high-fidelity dynamics; 
backward integration from 0.1 s ignores the measurements  
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a) Forward velocity 

 
b) Sideslip velocity 

 
c) Angle of attack velocity 

 
d) Forward body-roll rate 

 
e) Pitch rate 

 
f) Yaw rate 

Fig. 5 Trajectory matching in second method using the UKF with high-fidelity dynamics; 
backward integration from 0.1 s ignores the measurements  
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a) Aft body-roll angle 

 
b) Aft body-roll rate 

Fig. 6 Trajectory matching using the UKF with high-fidelity dynamics; backward 
integration from 0.1 s ignores the measurements  

The backward-integration estimates track the truth values well despite the absence 
of measurement updates. This makes sense since the estimator is using dynamics 
identical to those of the truth model. Errors at the start of backward integration are 
not reduced, but they also do not diverge. Thus, good estimates of the initial states 
are rendered. Table 1 compares the rendered estimates with those from other 
methods. All with the exception of the unmeasured tail-kit states and v and w are 
excellent.  
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Table 1 Initial-condition estimates rendered by several methods applied to virtual data 

State 7-DOF linear UKF of high-
fidelity “Static” models NLLS of high-

fidelity 

x [m] –1.7474a 2.0693 –1.7492 –1.6801 

y [m] 6.1567a 5.4887 6.1435 6.1707 

z [m] –0.47202a –1.7877 –0.45932 –0.4618 

𝜙𝜙𝐹𝐹0 [rad] 0.06862a 0.06756 0.068620 0.0839 

𝜃𝜃 [rad] 0.075854a 0.07322 0.0758536 0.0673 

ψ [rad] 0.094949a 0.080497 0.0949494 0.0449 

u [m/s] 224.78 224.92 225.69b 225.74 

v [m/s] –3.8907 0.025264 … 0.0477 

w [m/s] –2.7813 –0.08525 … –0.1702 

𝑝𝑝𝐹𝐹0 [rad/s] 0.018171 0.21643 … 0.3069 

q [rad/s] 3.0885 3.0964 … 3.2567 

r [rad/s] –2.2185 –1.8892 … –1.8558 

𝜙𝜙𝐴𝐴0 [rad] … –0.11575 … –0.1099 

𝑝𝑝𝐴𝐴0 [rad/s] 58.307 –1.9802 … –2.4166 
Note: NLLS = nonlinear least squares 
a Quantities were seeded from “static” model refinements.  
b 2-norm of body-frame velocity 

7. Finding Initial Conditions by Forward Integration of a 7-DOF 
Linear Model 

Since the backward integration of the high-fidelity dynamics resulted in an 
undetectable system, we investigated additional methods that used forward 
integration and gradient-based searches. Parameter updates using batch 
calculations were preferred over recursive methods such as the UKF. The initial 
angular rates and linear velocities were found by comparing the onboard sensor 
measurements with a set of predictions based on a linear 7-DOF model and iterating 
using the Marquardt algorithm. The gradient information required for Marquardt 
iteration was found using a technique by Burchett1 expanded to the 7-DOF “dual-
spin” case.2 

First, we introduce the 7-DOF linear model from Burchett et al.2 Assuming flat fire 
and aerodynamic and mass symmetry and using downrange-distance traveled as the 
independent variable, a set of linear equations can be used to predict the flight of a 
dual-spin projectile. Downrange distance is assumed to accumulate at a constant 
rate, taking the place of time: 
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𝑥𝑥′ = 𝐷𝐷   . (23) 

Flat fire and small angles of attack are assumed such that total velocity is a function 
of base drag only: 

 
𝑉𝑉′ = −

𝜌𝜌𝜌𝜌𝐷𝐷
2𝑚𝑚

𝐶𝐶𝑋𝑋0𝑉𝑉. (24) 

Roll angles are directly integrated from the roll rates:  

 𝜙𝜙𝐹𝐹′ =
𝐷𝐷
𝑉𝑉
𝑝𝑝𝐹𝐹    (25) 

and 𝜙𝜙𝐴𝐴′ =
𝐷𝐷
𝑉𝑉
𝑃𝑃𝐴𝐴. (26) 

The two roll rates are modeled by the following state space and may be coupled by 
bearing friction, 𝐶𝐶𝑉𝑉: 

 �𝑝𝑝𝐹𝐹′𝑝𝑝𝐴𝐴′
� = �𝐻𝐻 𝐽𝐽

𝑇𝑇 𝐿𝐿� �
𝑝𝑝𝐹𝐹
𝑝𝑝𝐴𝐴� + �𝑀𝑀𝑁𝑁� 

(27) 

where 

 

𝐻𝐻 =
𝜌𝜌𝜌𝜌𝐷𝐷3

4𝐼𝐼𝑥𝑥𝑥𝑥𝐹𝐹
𝐶𝐶𝐿𝐿𝐿𝐿𝐹𝐹 − 𝐽𝐽, 

 

 

𝐽𝐽 =
𝐷𝐷𝐶𝐶𝑉𝑉
𝑉𝑉𝐼𝐼𝑥𝑥𝑥𝑥𝐹𝐹

, 

 

 

𝐿𝐿 =
𝜌𝜌𝜌𝜌𝐷𝐷3

4𝐼𝐼𝑥𝑥𝑥𝑥𝐴𝐴
𝐶𝐶𝐿𝐿𝐿𝐿𝐴𝐴 − 𝑇𝑇, 

 

 

𝑇𝑇 =
𝐷𝐷𝐶𝐶𝑉𝑉
𝑉𝑉𝐼𝐼𝑥𝑥𝑥𝑥𝐴𝐴

 , 

 

 

𝑀𝑀 =
𝜌𝜌𝜌𝜌𝐷𝐷2𝑉𝑉

2𝐼𝐼𝑥𝑥𝑥𝑥𝐹𝐹
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹 , 

 

and 

𝑁𝑁 =
𝜌𝜌𝜌𝜌𝐷𝐷2𝑉𝑉

2𝐼𝐼𝑥𝑥𝑥𝑥𝐴𝐴
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿  
𝐴𝐴  . 
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The angle of attack, sideslip, pitch rate, and yaw rate are measured in a no-roll 
frame and may be modeled as the following linear system: 

 

�

𝑣𝑣′
𝑤𝑤′
𝑞𝑞′
𝑟𝑟′

� = 𝚵𝚵�
𝑣𝑣
𝑤𝑤
𝑞𝑞
𝑟𝑟
� + �

0
1
0
0

�𝐺𝐺𝑔𝑔, (28) 

where epicyclic frequencies and mode shapes are governed by the following matrix: 

 

𝚵𝚵 = �

−Ξ1 0
0 −Ξ1

0 −𝐷𝐷
𝐷𝐷 0

0 Ξ3
−Ξ3 0

Ξ4 −Ξ5
Ξ5 Ξ4

� 

 
 

(29) 

and  

 

Ξ1 =
𝜌𝜌𝜌𝜌𝐷𝐷
2𝑚𝑚

𝐶𝐶𝑁𝑁𝐴𝐴  , 
 

 

Ξ3 =
𝜌𝜌𝜌𝜌𝐷𝐷2

2𝐼𝐼𝑦𝑦𝑦𝑦
𝐶𝐶𝑀𝑀𝐴𝐴  , 

 

 

Ξ4 =
𝜌𝜌𝜌𝜌𝐷𝐷3

4𝐼𝐼𝑦𝑦𝑦𝑦
𝐶𝐶𝑀𝑀𝑀𝑀  , 

 

and 

Ξ5 =
𝐷𝐷
𝑉𝑉

(𝐼𝐼𝑋𝑋𝑋𝑋𝐹𝐹 𝑝𝑝𝐹𝐹 + 𝐼𝐼𝑋𝑋𝑋𝑋𝐴𝐴 𝑝𝑝𝐴𝐴)
𝐼𝐼𝑦𝑦𝑦𝑦

   . 

 

Cross range, altitude, pitch, and yaw are modeled by the following linear system 
with epicyclic states treated as a forcing function: 

 

�

𝑦𝑦′
𝑧𝑧′
𝜃𝜃′
𝜓𝜓′

� = 𝚽𝚽�

𝑦𝑦
𝑧𝑧
𝜃𝜃
𝜓𝜓
� +

𝐷𝐷
𝑉𝑉
𝐈𝐈 �
𝑣𝑣
𝑤𝑤
𝑞𝑞
𝑟𝑟
� 

 
 

(30) 

and 

 
𝚽𝚽 = �

0 0
0 0

0 𝐷𝐷
−𝐷𝐷 0

0 0
0 0

0 0
0 0

�   . 
 

(31) 
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7.1 Solution for the Linear 7-DOF Model 

The model can be analytically solved for its trajectory as follows. Total velocity 
(V), roll rates, and epicyclic pitch rate, yaw rate, angle of attack, and sideslip are 
treated as priors that must be solved in that order before integrating for the linear 
and angular position states. Forward velocity for flat fire is approximated by  

 𝑉𝑉(𝑠𝑠) = 𝑉𝑉0 exp �−
𝜌𝜌𝜌𝜌𝐷𝐷
2𝑚𝑚

𝐶𝐶𝑋𝑋0𝑠𝑠� 
 . 

(32) 

Equation 27 has the form  

 𝜉𝜉′(𝑠𝑠) = 𝐀𝐀𝜉𝜉(𝑠𝑠) + 𝐁𝐁(𝑠𝑠)  , (33) 
 

the total solution of which is given as  

 
𝜉𝜉(𝑠𝑠) = 𝑒𝑒𝐀𝐀𝑠𝑠𝜉𝜉0 + 𝑒𝑒𝐀𝐀𝑠𝑠 � 𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁(𝜏𝜏)𝑑𝑑𝜏𝜏   .

𝑠𝑠

0
  

(34) 

The integration may be performed by a matrix exponential as given in Van Loan.3 
If, for instance, 

 𝚿𝚿 = �𝐀𝐀 𝐁𝐁
0 𝑅𝑅�  , 

(35) 

then 

 𝑒𝑒𝚿𝚿𝑠𝑠 = �𝛀𝛀𝟏𝟏 𝚫𝚫𝟏𝟏
0 Ω2

� (36) 

and  

 𝛀𝛀𝟏𝟏 = 𝑒𝑒𝐀𝐀𝑠𝑠     (37) 
 𝚫𝚫𝟏𝟏 = 𝛀𝛀1 ∫ 𝑒𝑒−𝐀𝐀𝜏𝜏𝐁𝐁(𝜏𝜏)𝑑𝑑𝜏𝜏𝑠𝑠

0 . (38) 

Thus, if we set  

 𝐀𝐀 = �𝐻𝐻 𝐽𝐽
𝑇𝑇 𝐿𝐿�   , 

(39) 

R = 0, and  
 𝐁𝐁 = �𝑀𝑀𝑁𝑁�   . 

(40) 

Using the average total velocity over the previous two samples in M and N, we can 
use Eqs. 34–38 to find the roll rates at the next sample such that  

 
𝜉𝜉(𝑠𝑠 + 1) = 𝛀𝛀𝟏𝟏𝜉𝜉(𝑠𝑠) + 𝚫𝚫𝟏𝟏  . (41) 

Eq. 28 can then be assembled using the average roll rates and average total velocity 
over the last two samples in Ξ5. Equation 28 is solved by separating into 
homogeneous and particular solutions. The particular solution is given by setting 
the left-hand side to zero and solving for the steady-state values: 
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𝜂𝜂𝑝𝑝 = �

𝑣𝑣𝑝𝑝
𝑤𝑤𝑝𝑝
𝑞𝑞𝑝𝑝
𝑟𝑟𝑝𝑝

� = −𝚵𝚵−1 �
0
𝐺𝐺
0
0

�𝑔𝑔   . 
 

(42) 

The particular solution is then subtracted from the initial conditions prior to solving 
for the homogeneous part  

 
𝜒𝜒 = 𝜂𝜂(𝑠𝑠) − 𝜂𝜂𝑝𝑝. 

 
(43) 

The solution is then given by matrix exponentiation and adding the homogeneous 
solution back in  

 
𝜂𝜂(𝑠𝑠 + 1) = 𝑒𝑒𝚵𝚵𝑠𝑠𝜒𝜒 + 𝜂𝜂𝑝𝑝 (44) 

where 𝜂𝜂 = { 𝑣𝑣 𝑤𝑤 𝑞𝑞 𝑟𝑟}𝑇𝑇. 

Now since Eq. 30 has the same form as Eq.33, we use Eqs. 34–38 to find the 
position states at the next sample, making the following substitutions: 𝐀𝐀 = 𝚽𝚽 and  

 
𝐁𝐁 = 𝐿𝐿

𝑉𝑉
𝐈𝐈 �
𝑣𝑣
𝑤𝑤
𝑞𝑞
𝑟𝑟
�, (45) 

where the epicyclic states are averaged over the past two samples. 

7.2 Differentiating the Solution with Respect to the Initial 
Conditions 

The derivatives of roll rates and position variables can be found by differentiating 
Eq. 41 with respect to the variables of interest. First, collect the two roll rates into 
a roll rate vector 𝐏𝐏 = {𝑝𝑝𝐹𝐹 𝑝𝑝𝐴𝐴}𝑇𝑇. It follows that 𝜕𝜕𝐏𝐏/𝜕𝜕𝐏𝐏0|𝑠𝑠=0 = 𝐈𝐈. Since 𝐀𝐀, 𝐁𝐁 and 
hence 𝛀𝛀1, 𝚫𝚫1 are invariant wrt 𝐏𝐏0, Eq. 41 may then be applied recursively to predict 
the entire sequence of derivatives 
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𝜕𝜕𝐏𝐏0

�
𝑠𝑠
. 

(46) 

And, the parameters in 𝛀𝛀1 are updated every sampling period.  

Likewise, the epicyclic velocity states will require a matrix of costates that are 
initialized as 𝜕𝜕𝜂𝜂/𝜕𝜕𝜂𝜂0|𝑠𝑠=0 = 𝐈𝐈. These are propagated along the trajectory by 
recursively applying Eq. 44: 



 

23 

 
𝜕𝜕𝜂𝜂
𝜕𝜕𝜂𝜂0

�
𝑠𝑠+1

= 𝑒𝑒Ξ𝑠𝑠
𝜕𝜕𝜂𝜂
𝜕𝜕𝜂𝜂0

�
𝑠𝑠
. 

(47) 

Additionally, sensitivities of the roll states wrt their initial conditions will influence 
the 𝜂𝜂 vector. These quantities may be found by differentiating Eq. 44, keeping in 
mind that 𝚵𝚵 is a function of the roll rates through the F coefficient. Thus, for 
instance,  
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, 
(48) 

where  
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(49) 

and 
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(50) 

The sensitivities of roll states and epicyclic states wrt their own initial conditions 
will influence the position states such that Eq. 41 will be invoked several times to 
propagate costates that contain the sensitivities of 𝜉𝜉 = { 𝑦𝑦 𝑧𝑧 𝜃𝜃 𝜓𝜓}𝑇𝑇 wrt all 
angular rates plus v and w.   

For example, 
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, 
(51) 

where 𝛀𝛀1 and 𝜕𝜕𝚫𝚫1/𝜕𝜕𝑣𝑣0 are found from the matrix exponentiation  
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24 

And, finally, 𝜕𝜕𝐁𝐁/𝜕𝜕𝑣𝑣0 is found from averaging the relevant costates over that past 
two samples  
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�
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+
𝜕𝜕𝜂𝜂
𝜕𝜕𝑣𝑣0

�
𝑠𝑠+1 

�   . 
(54) 

 
For the HMA dual-spin model, derivatives of the state history wrt the following 
vector of parameters were propagated along the trajectory:  

𝛝𝛝  
= [𝐶𝐶𝑀𝑀𝐴𝐴 𝐶𝐶𝑁𝑁𝐴𝐴 𝐶𝐶𝑀𝑀𝑀𝑀   𝐶𝐶𝑋𝑋0 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹 𝐶𝐶𝐿𝐿𝐿𝐿𝐹𝐹 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴     𝑝𝑝𝐹𝐹0 𝑣𝑣0 𝑤𝑤0 𝑞𝑞0 𝑟𝑟0 𝑝𝑝𝐹𝐹0] . 

These derivatives are then assembled into a 12 × 14 matrix, which represents the 
derivatives of the state at a given sample wrt the adjustable parameters 𝜕𝜕𝐗𝐗/𝜕𝜕𝛝𝛝.  

7.3 Finding Best Model Parameters through the Marquardt 
Algorithm 

Onboard sensor measurements were generated using a high-fidelity simulation of 
the 83-mm HMA vehicle using a sampling rate of 1 kHz and a time horizon of 1 s. 
These data were then down-sampled onto a grid defined by each full meter of 
downrange travel. To ease matrix indexing in Matlab, the downrange datum was 
redefined to be 1 m downrange. A drag reduction using the method of Section 5 to 
match radar measurements with a point-mass model was needed in order to provide 
an estimate of the downrange history corresponding to the collected measurements. 
With a launch velocity of approximately 225 m, 1 s of travel resulted in 219 samples 
from s = 1 m to s = 219 m. The linear model solution and derivatives were used to 
iterate the model parameters using a Marquardt optimization scheme. The 
algorithm proceeds as follows: 

• Set Marquardt parameters µ = 0.01 and β = 10. 

• Form the Jacobian matrix and residual vector from data and predictions. 
Since nine measurements are taken per sample the measurements are 
interleaved so that all samples of the magnetometer x axis appear on the first 
219 rows of R and J and so on: 
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𝐉𝐉 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

|
𝜕𝜕𝑚𝑚𝐸𝐸𝑥𝑥

𝜕𝜕𝐶𝐶𝑀𝑀𝐴𝐴
|

|
𝜕𝜕𝑚𝑚𝐸𝐸𝑥𝑥

𝜕𝜕𝐶𝐶𝑁𝑁𝐴𝐴
|

⋯

|
𝜕𝜕𝑚𝑚𝐸𝐸𝑦𝑦

𝜕𝜕𝐶𝐶𝑀𝑀𝐴𝐴
|

|
𝜕𝜕𝑚𝑚𝐸𝐸𝑦𝑦

𝜕𝜕𝐶𝐶𝑀𝑀𝐴𝐴
|

⋯

⋮ ⋮ ⋱⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,    𝐑𝐑 =

⎩
⎪⎪
⎨

⎪⎪
⎧

|
𝑚𝑚�𝐸𝐸𝑥𝑥 − 𝑚𝑚𝐸𝐸𝑥𝑥

|
|

𝑚𝑚�𝐸𝐸𝑦𝑦 − 𝑚𝑚𝐸𝐸𝑦𝑦
|
⋮ ⎭

⎪⎪
⎬

⎪⎪
⎫

 

• Make a trial correction 

𝛝𝛝𝑖𝑖+1 = 𝛝𝛝𝑖𝑖 − (𝐉𝐉𝑇𝑇𝐉𝐉 + 𝜇𝜇𝐈𝐈)−1𝐉𝐉𝑇𝑇𝐑𝐑 .  

• Find the updated residual based by integrating forward in time with 
parameters 𝛝𝛝𝑖𝑖+1 . 

• If the error ‖𝐑𝐑‖2 is reduced, set µ = µ / β and repeat from Step 2. If not, set 
µ=µβ and repeat from Step 3. 

Since only the initial angular rates, angle of attack, and sideslip values are iterated 
in this context, the remaining initial states were estimated through other methods 
described in this report. The algorithm is then able to match the actual 
measurements with model predictions as shown in Fig. 7. 
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a) Magnetometer x axis 

 
b) Magnetometer y axis 

 
c) Magnetometer z axis 

 
d) Roll Rate 

 
e) Pitch Rate 

 
f) Yaw Rate 

Fig. 7 Trajectory matching using the 7-DOF linear model with Marquardt algorithm 
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g) Radar Radial Velocity  

h) Radar Elevation 

 
i) Radar Azimuth 

Fig. 7 Trajectory matching using the 7-DOF linear model with Marquardt algorithm 
(continued) 

8. Sensitivities of a Nonlinear 6-DOF Model wrt Initial 
Conditions 

In order to estimate all 12 initial states in parallel with NLLS estimation of 
aerodynamic parameters, analytic derivatives of states wrt initial conditions are 
found. Starting with the standard nonlinear 6-DOF equations of motion (Eqs.2a–
2d),4 derivatives are found in the same fashion as for the 7-DOF linear model. 

The far RHS of Eqs. 2a–2d is intended to show the “superficial” sets of independent 
variables in each expressions. “Superficial” indicates that functional dependencies 
considered are only those that are explicitly shown in Eqs.2a–2d. Equation 2c is a 
function of the Euler angles due to the gravity component of the total force vector 
{𝑋𝑋 𝑌𝑌 𝑍𝑍}𝑇𝑇. Other independent variables are embedded in the aerodynamic force 
and moment models as will be investigated later. Once again, the chain rule is 
invoked as 
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resulting in the following non-zero derivatives 
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and 𝜕𝜕𝜓𝜓/(𝜕𝜕𝜓𝜓0 ) = 1. Also 
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�  = −

𝜕𝜕𝐒𝐒
𝜕𝜕𝑟𝑟
�
𝑢𝑢
𝑣𝑣
𝑤𝑤
�
𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟0

   , 

 

(57d) 

 
𝜕𝜕
𝜕𝜕𝑝𝑝0

�
�̇�𝑝
�̇�𝑞
�̇�𝑟
�  = −𝐈𝐈−1 ��

𝜕𝜕𝐒𝐒
𝜕𝜕𝑝𝑝
� [𝐈𝐈] �

𝑝𝑝
𝑞𝑞
𝑟𝑟
� + 𝐒𝐒[𝐈𝐈] �

1
0
0
��

𝜕𝜕𝑝𝑝
𝜕𝜕𝑝𝑝0

  , 

 

(57e) 

 
𝜕𝜕
𝜕𝜕𝑞𝑞0

�
�̇�𝑝
�̇�𝑞
�̇�𝑟
�  = −𝐈𝐈−1 ��

𝜕𝜕𝐒𝐒
𝜕𝜕𝑞𝑞
� [𝐈𝐈] �

𝑝𝑝
𝑞𝑞
𝑟𝑟
� + 𝐒𝐒[𝐈𝐈] �

0
1
0
��

𝜕𝜕𝑞𝑞
𝜕𝜕𝑞𝑞0

  , 

 

(57f) 

 
𝜕𝜕
𝜕𝜕𝑟𝑟0

�
�̇�𝑝
�̇�𝑞
�̇�𝑟
�  = −𝐈𝐈−1 ��

𝜕𝜕𝐒𝐒
𝜕𝜕𝑟𝑟
� [𝐈𝐈] �

𝑝𝑝
𝑞𝑞
𝑟𝑟
� + 𝐒𝐒[𝐈𝐈] �

0
0
1
��

𝜕𝜕𝑟𝑟
𝜕𝜕𝑟𝑟0

  , 

 

(57g) 

and the necessary matrix derivatives are easily found with the exception of 

 
𝜕𝜕𝑇𝑇𝑏𝑏2𝑒𝑒
𝜕𝜕𝜙𝜙

 = �
0 𝑐𝑐𝜙𝜙𝑡𝑡𝜃𝜃 −𝑠𝑠𝜙𝜙𝑡𝑡𝜃𝜃
0 −𝑠𝑠𝜙𝜙 −𝑐𝑐𝜙𝜙
0 𝑐𝑐𝜙𝜙/𝑐𝑐𝜃𝜃 −𝑠𝑠𝜙𝜙/𝑐𝑐𝜃𝜃

� 

 
 

 
𝜕𝜕𝑇𝑇𝑏𝑏2𝑒𝑒
𝜕𝜕𝜃𝜃

 = �
0 𝑠𝑠𝜙𝜙 sec2 𝜃𝜃 𝑐𝑐𝜙𝜙 sec2 𝜃𝜃
0 0 0
0 𝑠𝑠𝜙𝜙𝑡𝑡𝜃𝜃/𝑐𝑐𝜃𝜃 𝑐𝑐𝜙𝜙𝑡𝑡𝜃𝜃/𝑐𝑐𝜃𝜃

�   . 
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After integration, the terms in Eqs. 55–57 can be assembled into matrix form as  

𝜕𝜕𝐗𝐗
𝜕𝜕𝐗𝐗0

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐈𝐈

𝜕𝜕
𝜕𝜕𝜙𝜙0

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�

𝜕𝜕
𝜕𝜕𝜃𝜃0

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�

𝜕𝜕
𝜕𝜕𝜓𝜓0
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𝑥𝑥
𝑦𝑦
𝑧𝑧
�

𝟎𝟎
𝜕𝜕
𝜕𝜕𝜙𝜙0

�
𝜙𝜙
𝜃𝜃
𝜓𝜓
�

𝜕𝜕
𝜕𝜕𝜃𝜃0

�
𝜙𝜙
𝜃𝜃
𝜓𝜓
� �

0
0
1
�

𝜕𝜕
𝜕𝜕𝑢𝑢0

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�

𝜕𝜕
𝜕𝜕𝑣𝑣0

�
𝑥𝑥
𝑦𝑦
𝑧𝑧
�
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�
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�
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�
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�
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𝜕𝜕
𝜕𝜕𝑞𝑞0
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⎦
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⎥
⎥
⎥
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⎥
⎥
⎥
⎤

 



 

32 

However, the terms highlighted in red are zero under the current assumptions. This 
is not realistic in light of Eq. 28, where q and r are clearly functions of v and w even 
in the linear model. In order to precisely model these terms, examine the nonlinear 
aerodynamic forces and moments. In particular, 𝑞𝑞 = 𝑓𝑓(𝑤𝑤) and 𝑟𝑟 = 𝑔𝑔(𝑣𝑣) due to the 
moment created by noncollocation of the projectile center of mass and center of 
pressure. In other words, this coupling stems from the moment found by a cross 
product of the vector from the CG to the center of pressure with the steady 
aerodynamic force vector. Assuming that the projectile is axisymmetric in mass and 
aerodynamics, this becomes 

�
𝐿𝐿𝑆𝑆𝐴𝐴
𝑀𝑀𝑆𝑆𝐴𝐴
𝑁𝑁𝑆𝑆𝐴𝐴

�  = �
0 0 0
0 0 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶 − 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿
0 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿 − 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶 0

� �
𝑋𝑋𝑆𝑆𝐴𝐴
𝑌𝑌𝑆𝑆𝐴𝐴
𝑍𝑍𝑆𝑆𝐴𝐴

� 

Substituting the dynamic pressure, projectile cross sectional area, and angle of 
attack / sideslip, we can write  

𝑀𝑀𝑆𝑆𝐴𝐴 = �
𝜋𝜋
8
𝜌𝜌𝑉𝑉2𝐷𝐷2� (𝐶𝐶𝑁𝑁𝐴𝐴𝑤𝑤/𝑉𝑉)(𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶 − 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿) 

𝑁𝑁𝑆𝑆𝐴𝐴 = −�
𝜋𝜋
8
𝜌𝜌𝑉𝑉2𝐷𝐷2� (𝐶𝐶𝑁𝑁𝐴𝐴𝑣𝑣/𝑉𝑉)(𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶 − 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿) 

In the HMA code, the product 𝐶𝐶𝑁𝑁𝐴𝐴(𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶 − 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿) is captured in a separate 
aerodynamic coefficient, 𝐶𝐶𝑀𝑀𝐴𝐴; however, for consistent units the correct substitution 
is 𝐶𝐶𝑁𝑁𝐴𝐴(𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶 − 𝜌𝜌𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿) → 𝐶𝐶𝑀𝑀𝐴𝐴𝐷𝐷. Again assuming mass symmetry, and taking 
derivatives wrt w and v respectively, the result is 

𝜕𝜕�̇�𝑞
𝜕𝜕𝑤𝑤

= �
𝜋𝜋

8𝐼𝐼𝑦𝑦𝑦𝑦
𝜌𝜌𝑉𝑉𝐷𝐷3�𝐶𝐶𝑀𝑀𝐴𝐴 

𝜕𝜕�̇�𝑟
𝜕𝜕𝑣𝑣

= −�
𝜋𝜋

8𝐼𝐼𝑦𝑦𝑦𝑦
𝜌𝜌𝑉𝑉𝐷𝐷3�𝐶𝐶𝑀𝑀𝐴𝐴   . 

Thus 

 
𝜕𝜕�̇�𝑞
𝜕𝜕𝑤𝑤0

= �
𝜋𝜋

8𝐼𝐼𝑦𝑦𝑦𝑦
𝜌𝜌𝑉𝑉𝐷𝐷3�𝐶𝐶𝑀𝑀𝐴𝐴

𝜕𝜕𝑤𝑤
𝜕𝜕𝑤𝑤0

 

 

(58a) 

and 
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𝜕𝜕�̇�𝑟
𝜕𝜕𝑣𝑣0

= −�
𝜋𝜋

8𝐼𝐼𝑦𝑦𝑦𝑦
𝜌𝜌𝑉𝑉𝐷𝐷3�𝐶𝐶𝑀𝑀𝐴𝐴

𝜕𝜕𝑣𝑣
𝜕𝜕𝑣𝑣0

   . 

 

(58b) 

8.1 Results with Virtual Data 

Matlab modules were written to compute columns of the Jacobian matrix 
accounting for the sensitivity of onboard sensor measurements with respect to 
initial conditions using Eqs. 55–58 to compute the time derivatives of the costates 
needed to populate the matrix 𝜕𝜕𝐗𝐗/𝜕𝜕𝐗𝐗𝟎𝟎. Equations 8, 11–16, 18, and 20 are used to 
evaluate the matrix 𝜕𝜕𝐘𝐘/𝜕𝜕𝐗𝐗. 

These sensitivities were used in the NLLS iteration code provided by Fresconi, 
which simultaneously searched for four linear aerodynamic coefficients. The search 
was seeded with initial guesses from the 7-DOF linear approximation with the 
exceptions of v and w. The existing code provided logical arrays to allow the user 
to down-select a subset of initial conditions to be refined and a subset of 
measurements to be matched. For program simplicity, the new code does not allow 
the user to deselect any initial conditions. An additional factor is introduced instead, 
allowing the user to artificially increase the sensitivities of each column of 𝜕𝜕𝐗𝐗/𝜕𝜕𝐗𝐗𝟎𝟎 
and thus slow down the adjustment of selected initial conditions (ICs).  

Figure 6 compares the model predictions with the actual sensor data after 15 NLLS 
iterations. Only the first 0.3 s of data were used to reduce processing time and 
emphasize early transients, especially in radar signals. After 15 iterations, initial 
condition estimates move to the values shown in the far-right column of Table 1. 
As seen in Fig. 8, model predictions match the sensor signals very well with only 
slight discrepancies in angular rates and radar azimuth early in the trajectory.  
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a) Magentometer 

 
b) Gyroscope 

 
c) Accelerometer 

 
d) Radar 

Fig. 8 High-fidelity model predictions of the onboard sensor signals after 15 iterations of 
NLLS refinements to ICs and linear aerodynamic parameters 

8.2 Results with Actual Data 

Data were collected from the launch of an instrumented 83-mm HMA mortar round. 
The static algorithms of Section 5 were performed to provide good starting guesses 
for the Euler angles and position. Once good Euler angles and position were 
established, the algorithm of this section was applied for 15 iterations. Figure 9 
shows the model predictions compared with the actual measurements after 
modifying all 12 initial conditions and five aerodynamic parameters for 15 
iterations.  
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a) Magentometer 

 
b) Gyroscope 

 
c) Accelerometer 

 
d} Radar 

 
e) Pitch Rate 

 
f) Yaw Rate 

Fig. 9 Model predictions and actual measurements for HMA Flight 8 data 

Note that magnetometer predictions match the data well. The I-axis gyroscope 
saturates around 28.3 rad/s, making it impossible to observe the actual spin rate 
beyond about t = 0.28 s. Bias and misalignment errors were estimated for the J- and 



 

36 

K-axis gyroscopes assuming a common instrument axis frame. Also, data prior to 
49 ms were ignored due to dead band behavior of certain signals prior to this point. 
Accelerometer transverse channels were ignored due to large noise. The axial 
acceleration is plotted and exhibits a similar degree of noise. Since axial 
acceleration is not modulated by epicyclic pitch and yaw, the model is able to 
capture the average axial acceleration due primarily to drag. Radar signals were 
matched well by the model.  

Table 2 displays the guesses rendered by static methods and initial and final 
estimates used in the high-fidelity search. Note that only a 6-DOF model was used, 
which proved adequate since high-speed camera footage indicated the front and aft 
sections of the projectile rolled in sync for a large part of the trajectory.  

Table 3 shows the aerodynamic parameters that were iterated during the IC search.   

Table 2 IC estimates from reducing actual HMA data 

State “Static” models Guesses entered 
into NLLS 

Result of NLLS 
after 24 iterations 

x [m] 5.0472 5.0472 8.1277 

y [m] –1.8633 –1.8633 –0.3235 

z [m] –0.34839 –0.34839 –0.9311 

𝜙𝜙𝐹𝐹0[rad] 4.3632 4.3632 4.3738 

θ[rad] 0.0981 0.0981 0.0983 

ψ[rad] 0.048446 0.048446 0.04291 

u [m/s] 217.05 217.05 218.15 

v [m/s] … 0.14795 –0.2058 

w [m/s] … –0.14458 –1.3333 

𝑝𝑝𝐹𝐹0 [rad/s] … 11.513 13.015 

q [rad/s] … –2.1433 –3.7745 

r [rad/s] … –0.46654 –0.7909 
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Table 3 Initial and final aerodynamic parameter estimates 

Parameter Base Adjustment Final 

𝐶𝐶𝑋𝑋0  0.33265 1.029 0.34230 

𝐶𝐶𝑀𝑀0 0.066235 –1.0068 –0.006669 

𝐶𝐶𝑁𝑁0 0.066235 0.38012 0.025177 

𝐶𝐶𝑀𝑀𝐴𝐴 –11.5 0.6182 –7.1093 

𝐶𝐶𝐿𝐿0 0.366652 0.27579 0.10112 

 
The process was repeated for 2.0 ≤ 𝑡𝑡 ≤ 2.35 (as depicted in Fig. 10). Static 
trimming to set the initial Euler angles, and Cartesian position were necessary for 
a good first guess. Since the roll-rate sensor was saturated, initial roll rate had to be 
estimated from the frequency of magnetometer oscillations.  

 
a) Magentometer 

 
b) Gyroscope 

 
c) Accelerometer 

 
d) Radar 

Fig. 10 In repeated process, model predictions and actual measurements for HMA Flight 8 
data  
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Roll-moment coefficients could not be adjusted without reference to the roll rate. 
Attempts to do so resulted in a singularity. Figure 10 compares the model 
predictions with the measurements used to refine the model over this phase of 
flight. The magnetometer I-axis prediction is slightly out of phase with the actual. 
The transverse magnetometer axes predictions have amplitudes slightly smaller 
than the data. Radar and I axis accelerometer signals match well. Tables 4 and 5 
record the initial and refined initial condition and aerodynamic parameters for the 
second phase of flight.  

Table 4 IC estimates from reducing actual HMA data, second phase of flight 

State “Static” models Guesses entered 
into NLLS 

Result of NLLS 
after 15 iterations 

x [m] 422.15 420 425.19 

y [m] 2.0813 1.6268 –2.706 

z [m] –38.636 –34.423 –28.529 

𝜙𝜙𝐹𝐹0[rad] 5.1124 5.1124 5.1358 

θ[rad] 0.0343 0.0343 0.026439 

ψ [rad] 0.34681 0.34681 0.30868 

u [m/s] 217.05 187.39 190.03 

v [m/s] … –1.1111 –0.49713 

w [m/s] … –3.0191 –4.8174 

𝑝𝑝𝐹𝐹0 [rad/s] … 73.145 73.085 

q [rad/s] … 1.8966 2.2518 

r [rad/s] … 0 –0.31993 

 

Table 5 Initial and final aerodynamic parameter estimates, second phase of flight 

Parameter Base Adjustment Final 

𝐶𝐶𝑋𝑋0  0.33265 1.0464 0.34808 

𝐶𝐶𝑁𝑁𝛼𝛼 9.847 0.19603 1.93031 

𝐶𝐶𝑀𝑀0 0.066235 5.6356 0.37327 

𝐶𝐶𝑁𝑁0 0.066235 –5.5102 –0.36500 

𝐶𝐶𝑀𝑀𝐴𝐴 –11.5 0.83217 –9.5700 

 
The process was repeated once more for 4.0 ≤ 𝑡𝑡 ≤ 4.35 (as depicted in Fig. 11). 
Static trimming to set the initial Euler angles and Cartesian position were necessary 
for a good first guess. Trimming the Euler angles to match the initial magnetometer 
readings resulted in the values shown in Table 6. The initial roll angle is smaller 
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than that shown in Table 4, as the algorithm will find φ within 0 ≤ φ < 2π and thus 
“unwrap” roll that may have accumulated between data segments. Since the roll-
rate sensor was saturated, initial roll rate had to be estimated from the frequency of 
magnetometer oscillations.   

 
a) Magentometer 

 
b) Gyroscope 

 
c) Accelerometer  

d) Radar 

Fig. 11  Process repeated again, model predictions and actual measurements for HMA 
Flight 8 data  

Roll-moment coefficients could not be adjusted without reference to the roll rate. 
Attempts to do so resulted in a singularity. 𝐶𝐶𝑁𝑁𝛼𝛼 and 𝐶𝐶𝑀𝑀𝐴𝐴 were held constant at the 
values found from the second data segment. Figure 11 compares the model 
predictions with the measurements used to refine the model over this phase of 
flight. The magnetometer I-axis prediction is slightly out of phase with the actual. 
The transverse magnetometer axes predictions have amplitudes slightly smaller 
than the data. Radar and I-axis accelerometer signals match well. Transverse 
gyroscope axis predictions capture the slow pitch–yaw oscillation apparent in the 
data. The faster oscillation in the prediction is due to nontrivial estimates of 
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gyroscope misalignment, causing the model to include a projection of body roll rate 
in the sensed pitch and yaw. This phenomenon is not obvious in the data due to 
large noise. Table 6 shows the IC estimates as they are refined through the various 
stages of model fidelity. Table 7 shows the estimated aerodynamic parameters for 
this phase. 

Table 6 IC estimates from reducing actual HMA data, third phase of flight 

State “Static” models Guesses entered 
into NLLS 

Result of NLLS 
after 15 iterations 

x [m] 857.72 857.72 863.46 
y [m] 3.3191 3.31911 2.0647 
z [m] –66.751 –66.751 –16.485 

𝜙𝜙𝐹𝐹0[rad] 4.453 4.453 4.4502 

θ[rad] –0.1673 –0.1673 –0.16387 

ψ[rad] 0.15901 0.15901 0.14712 

u [m/s] 164.87 164.0 160.84 
v [m/s] … –1.1111 –1.5113 
w [m/s] … –3.0191 –2.789 

𝑝𝑝𝐹𝐹0 [rad/s] … 67 66.977 
q [rad/s] … 1.8966 2.0262 
r [rad/s] … 0 –0.04602 

 

Table 7 Initial and final aerodynamic parameter estimates, third phase of flight 

Parameter Base Adjustment Final 

𝐶𝐶𝑋𝑋0  0.33265 1.1296 037576. 

𝐶𝐶𝑀𝑀0 0.066235 1.7526 0.11608 

𝐶𝐶𝑁𝑁0 0.066235 –11.0241 -0.73018 

9. Conclusion 

This report has explored several methods to match onboard sensor and tracking-
radar data with models of varying fidelity. Throughout this study we have sought 
methods to improve the starting guesses of projectile initial states and thus enhance 
the ability of a nonlinear least squares algorithm to converge. Typically, models 
must be applied in order of increasing fidelity so that some of the states have very 
good starting guesses before the full 6-DOF model is applied. Recursive methods 
may suffer from unobservability, resulting in nonconvergence or even divergence 
of the model. Thus, batch methods are preferred when possible. The method was 
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applied to data from an actual flight test. The algorithms found parameters in order 
to match the data well despite unmodeled sensor errors and the complete loss of 
some measurements due to saturation and other adverse effects.  
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List of Symbols, Abbreviations, and Acronyms 

3-D  3-dimensional 

CG  center of gravity 

DOF  degrees of freedom 

EXTRACTR  Extending Telemetry Reduction to Aerodynamic 
Coefficients and Trajectory Reconstruction 

HMA  High Maneuverability Airframe 

IC  initial condition 

NLLS  nonlinear least squares 

RHS  right-hand side 

UKF   Unscented Kalman Filter 

wrt  with respect to 

{x,y,z}  projectile cg position in gun tube frame [m] 

{𝑉𝑉𝑥𝑥,𝑉𝑉𝑦𝑦,𝑉𝑉𝑧𝑧}  projectile cg velocity in gun tube frame [m/s] 

{𝜙𝜙, 𝜃𝜃,𝜓𝜓}  projectile roll, pitch and yaw in gun tube frame [rad] 

{u,v,w}  projectile linear velocity in the body or no-roll frame [m/s] 

{p,q,r}   projectile angular rates in the body or no-roll frame [rad/s] 

{X,Y,Z}  total force vector in projectile body frame [N] 

{L,M,N}  total moment vector in projectile body frame [N-m] 

m  projectile mass [kg] 

T  rotation matrix 

S  skew matrix for cross product 

I  inertia matrix [kg-m2] or identity matrix 

�𝑅𝑅𝑉𝑉,𝑅𝑅𝜃𝜃,𝑅𝑅𝜓𝜓�  radar measurement vector 

�𝑚𝑚�𝐸𝐸𝑥𝑥,𝑚𝑚�𝐸𝐸𝑦𝑦,𝑚𝑚�𝐸𝐸𝑧𝑧� earth magnetic field measured in body frame [nT] 

�𝑎𝑎�𝑥𝑥,𝑎𝑎�𝑦𝑦,𝑎𝑎�𝑧𝑧�  accelerometer measurements in body frame [m/s2] 

�̂�𝐶𝑋𝑋  dimensional drag coefficient = 𝜌𝜌𝜋𝜋𝐷𝐷2𝐶𝐶𝑋𝑋0/(8𝑚𝑚) [1/m] 
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𝑉𝑉  total velocity √𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2 [m/s] 

𝜌𝜌  atmospheric density [kg/m3] 

S  area of projectile cross section [m2] 

s  arclength traveled [calibers] 

D  projectile diameter [m] 

𝐶𝐶𝑋𝑋0  zero angle of attack coefficient 

𝐶𝐶𝑁𝑁𝐴𝐴  normal force due to angle of attack coefficient 

𝐶𝐶𝑀𝑀𝐴𝐴  pitch moment due to AOA coefficient 

𝐶𝐶𝐿𝐿0  static roll moment coefficient 

𝐶𝐶𝑀𝑀𝑀𝑀  pitch damping coefficient 

𝐶𝐶𝐿𝐿𝑝𝑝  roll damping coefficient 

Subscript 

b2i  ground to body frame 

b2e  body to Euler frame 

F  forward body 

A  aft body 

p  particular (forced) solution 

Superscript 

T  matrix transpose 
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